Abstract We discuss a fractional eigenvalue problem with the fractional Sturm-Liouville operator mixing the left and right derivatives of order in the range (1/2, 1], subject to a variant of Robin boundary conditions. The considered differential fractional Sturm-Liouville problem (FSLP) is equivalent to an integral eigenvalue problem on the respective subspace of continuous functions. By applying the properties of the explicitly calculated integral Hilbert-Schmidt operator, we prove the existence of a purely atomic real spectrum for both eigenvalue problems. The orthogonal eigenfunctions’ systems coincide and constitute a basis in the corresponding weighted Hilbert space. An analogous result is obtained for the reflected fractional Sturm-Liouville problem.
Read full abstract