The present work deals with some spectral properties of the problem \medskip $(\mathcal{P} )$ $\Bigg \{$\vbox {$D^{\alpha }_{b,-}(p(x)D^{\alpha }_{a,+}y)(x)+\lambda q(x)\,y(x)=0$,\quad $a\lt x\lt b$, \vspace {-2pt} \qquad \quad $\displaystyle \lim _{\stackrel {x\rightarrow a}{>}}(x-a)^{1-\alpha }y(x)=0=y(b)$,} \smallskip \noindent where $p,q \in C([a,b])$, $p(x)>0$, $q(x)>0$, for all $x \in [a,b]$ and ${1}/{2} \lt \alpha \lt 1$. $D^{\alpha }_{b,-}$ and $D^{\alpha }_{a,+}$ are the right- and left-sided Riemann-Liouville fractional derivatives of order $\alpha \in (0,1)$, respectively. $\lambda $ is a scalar parameter. First, we prove, using the spectral theory of linear compact operators, that this problem has an infinite sequence of real eigenvalues and the corresponding eigenfunctions form a complete orthonormal system in the Hilbert space $L^{2}_q[a,b]$. Then, we investigate some asymptotic properties of the spectrum as $\alpha \underset {\lt }{\rightarrow } 1$. We give, in particular, the asymptotic expansion of the first eigenvalue.