Abstract

ABSTRACTIn this paper, we discuss a class of eigenvalue problems of fractional differential equations of order with variable coefficients. The method of solution is based on utilizing the fractional series solution to find theoretical eigenfunctions. Then, the eigenvalues are determined by applying the associated boundary conditions. A notable result, for certain cases, is that the eigenfunctions are characterized in terms of the Mittag-Leffler or semi Mittag-Leffler functions. The present findings demonstrate, for certain cases, the existence of a critical value at which the problem has no eigenvalue (for ), only one eigenvalue (at ), a finite or infinitely many eigenvalues (for ). The efficiency and accuracy of the present algorithm are demonstrated through several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.