In this paper, the thermoelastic behavior of a rod made of an isotropic material under the action of a moving heat source was investigated using a new theory of thermoelasticity related to fractional-order time with two relaxation times. A mathematical model of the one-dimensional thermoelasticity problem was established based on the new thermoelasticity theory. We considered the symmetry of the material, and the fractional-order thermoelasticity control equation was given. Subsequently, the control equations were solved and analyzed using the Laplace transform and its inverse transform. This study examined the effects of fractional-order parameters, time, two thermal relaxation times, and the speed of movement of the heat source on the displacement, temperature, and stress distribution patterns in the rod.