Solvent deasphalting (SDA) is a heavy oil upgrading process that selectively extracts deasphalted oil (DAO) and rejects asphaltenes. In this study, a quantitative analysis was conducted to predict DAO yields in the SDA process using relative energy difference (RED); the RED was calculated from Hansen solubility parameters (HSPs) of the feedstock and extraction solvent along with the extraction conditions, such as temperature and solvent-to-oil ratio (SOR). SDA extraction experiments were performed in a continuous bench-scale unit using vacuum residue (VR) and a mixture of bunker C fuel oil (BC) and VR as feedstocks. The HSPs of saturate, aromatic, resin, and asphaltene fractions derived from the VR and BC were measured using solubility tests, wherein the fractions were dissolved in 37 different solvents. Finally, simple and accurate correlations between the DAO yield and corresponding modified RED were acquired and used to explain the effects of temperature and SOR on the DAO yield.