Summary Tight gas plays often have multiple lenses of producing formations. Multizone fracturing or limited-entry fracturing is a cost-effective method to complete and produce tight gas wells in these layered reservoirs. The rate and volume of fracturing fluid injected into the different layers have an important role in determining the fracture characteristics. However, because of the spatial restriction of downhole conditions, it is very challenging to obtain a specific injection rate for each perforated zone. Temperature variations in the wellbore, outside of the casing, are available with new technology such as distributed-temperaturesensor (DTS) fiber-optic cables. The main objective of this study is to relate the wellbore-temperature changes as measured by DTS data to the wellbore and fractured-interval injection rates during a multizone fracturing process. We develop a forward simulation model on the basis of mass and energy conservation for calculating the temperature profile and temperature history in the wellbore and in the rock surrounding the wellbore. The model allows for liquid flow into the fractured interval. Subsequently, the model is integrated with an inverse-estimation algorithm, which is used to estimate flow rates both in the wellbore and into the fractured interval. The estimation algorithm is based on a gradient search method. A distinguishing feature of this work is the development of a radial model used to represent the temperature evolution in the near-wellbore region. The higher order allows accurate calculation of the temperature in the wellbore while still capturing the fluid-flow and heat-transport aspects of the hydraulic-fracture propagation. Our estimation results show a good comparison between the calculated temperature profiles and those observed in the field with DTS. Also, the model is able to estimate a flow-rate history consistent with total field-injection volume. This work enables an accurate and quick interpretation of the wellbore DTS data to determine the interval injection rates during a hydraulic-fracturing process. Knowledge of accurate interval injection rates and the corresponding fracture characteristics can be useful in designing a better limited-entry completion that can optimize the fracture length by use of rate control and/or fluid diversion.
Read full abstract