Abstract
In order to prioritize the measurement requirements and accuracies of the two new lidar missions, a physical model is required for a fundamental understanding of the impact of surface topography, footprint size and off-nadir pointing on vegetation lidar waveforms and vegetation height retrieval. In this study, we extended a well developed Geometric Optical and Radiative Transfer (GORT) vegetation lidar model to take into account for the impacts of surface topography and off-nadir pointing on vegetation lidar waveforms and vegetation height retrieval and applied this extended model to assess the aforementioned impacts on vegetation lidar waveforms and height retrieval. Model simulation shows that surface topography and off-nadir pointing angle stretch waveforms and the stretching effect magnifies with footprint size, slope and off-nadir pointing angle. For an off-nadir pointing laser penetrating vegetation over a slope terrain, the waveform is either stretched or compressed based on the relative angle. The stretching effect also results in a disappearing ground peak return when slope or off-nadir pointing angle is larger than the “critical slope angle”, which is closely related to various vegetation structures and footprint size. Model simulation indicates that waveform shapes are affected by surface topography, off-nadir pointing angle and vegetation structure and it is difficult to remove topography effects from waveform extent based only on the shapes of waveform without knowing any surface topography information. Height error without correction of surface topography and off-nadir pointing angle is the smallest when the laser beams at the toward-slope direction and the largest from the opposite direction. Further simulation reveals within 20° of slope and off-nadir pointing angle, given the canopy height as roughly 25 m and the footprint size as 25 m, the error for vegetation height (RH100) ranges from − 2 m to greater than 12 m, and the error for the height at the medium energy return (RH50) from − 1 m to 4 m. The RH100 error caused by unknown surface topography and without correction of off-nadir pointing effect can be explained by an analytical formula as a function of vegetation height, surface topography, off-nadir pointing angle and footprint size as a first order approximation. RH50 is not much affected by topography, off-nadir pointing and footprint size. This forward model simulation can provide scientific guidance on prioritizing future lidar mission measurement requirements and accuracies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have