After estrus, when mature follicles fail to ovulate, they may further develop to form follicular cysts, affecting the normal function of ovaries, reducing the reproductive efficiency of dairy cows and causing economic losses to cattle farms. However, the key points of ovarian follicular cysts pathogenesis remain largely unclear. The purpose of the current research was to analyze the formation mechanism of ovarian follicular cysts from hormone and gene expression profiles. The concentrations of progesterone (P4), estradiol (E2), insulin, insulin-like growth factor 1 (IGF1), leptin, adrenocorticotropic hormone (ACTH) and ghrelin in follicle fluid from bovine follicular cysts and normal follicles were examined using enzyme-linked immunosorbent assay (ELISA) or 125I-labeled radioimmunoassay (RIA); the corresponding receptors' expression of theca interna cells was tested via quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the mRNA expression profiling was analyzed via RNA sequencing (RNA-seq). The results showed that the follicular cysts were characterized by significant lower E2, insulin, IGF1 and leptin levels but elevated ACTH and ghrelin levels compared with normal follicles (p < 0.05). The mRNA expressions of corresponding receptors, PGR, ESR1, ESR2, IGF1R, LEPR, IGFBP6 and GHSR, were similarly altered significantly (p < 0.05). RNA-seq identified 2514 differential expressed genes between normal follicles and follicular cysts. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis linked the ovarian steroidogenesis pathway, especially the STAR, 3β-HSD, CYP11A1 and CYP17A1 genes, to the formation of follicular cysts (p < 0.01). These results indicated that hormone metabolic disorders and abnormal expression levels of hormone synthesis pathway genes are associated with the formation of bovine ovarian follicular cysts.