Abstract In this paper, free and forced vibrations of a transversely vibrating Timoshenko beam/frame carrying a discrete two-degrees-of-freedom spring-mass system are analyzed using the wave vibration approach, in which vibrations are described as waves that propagate along uniform structural elements and are reflected and transmitted at structural discontinuities. From the wave vibration standpoint, external excitations applied to a structure have the effect of injecting vibration waves to the structure. In the combined beam/frame and two-degrees-of-freedom spring-mass system, the vibrating discrete spring-mass system injects waves into the distributed beam/frame through the spring forces at the two spring attached points. Assembling the propagation, reflection, transmission, and external force injected wave relations in the beam/frame provides an analytical solution to vibrations of the combined system. In this study, the effects of rotary inertia and shear deformation on bending vibrations are taken into account, which is important when the combined structure involves a short beam element or when higher frequency modes are of interest. Numerical examples are given, with comparisons to available results based on classical vibration theories. The wave vibration approach is seen to provide a systematic and concise solution to both free and forced vibration problems in hybrid distributed and discrete systems.