Abstract

The problem of vibrations generated in a homogeneous and isotropic elastic half-space by spatially concentrated forces, known in Seismology as (part of) the Lamb problem, is formulated here in terms of Helmholtz potentials of the elastic displacement. The method is based on time Fourier transforms, spatial Fourier transforms with respect to the coordinates parallel to the surface (in-plane Fourier transforms) and generalized wave equations, which include the surface values of the functions and their derivatives. This formulation provides a formal general solution to the problem of forced elastic vibrations in the homogeneous and isotropic half-space. Explicit results are given for forces derived from a gradient, localized at an inner point in the half-space, which correspond to a scalar seismic moment of the seismic sources. Similarly, explicit results are given for a surface force perpendicular to the surface and localized at a point on the surface. Both harmonic time dependence and time $$\delta $$ -pulses are considered (where $$\delta $$ stands for the Dirac delta function). It is shown that a $$\delta $$ -like time dependence of the forces generates transient perturbations which are vanishing in time, such that they cannot be viewed properly as vibrations. The particularities of the generation and the propagation of the seismic waves and the effects of the inclusion of the boundary conditions are discussed, as well as the role played by the eigenmodes of the homogeneous and isotropic elastic half-space. Similarly, the distinction is highlighted between the transient regime of wave propagation prior to the establishment of the elastic vibrations and the stationary-wave regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.