Abstract
This work presents forced vibration responses of a cantilever beam made of functionally graded material under a harmonic load. The material properties of beam vary along the axial direction. The kinematics of the beam are considered within Timoshenko beam theory. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the Newmark average acceleration method is used in the time history. In this study, free and forced vibration responses of the axially functionally graded beam are investigated in detail. In the numerical examples, the effects of material graduation, geometric and dynamic parameters on the free and forced vibration response of axially graded beam are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.