Abstract

In presented paper, moving load problem of functionally graded beams is investigated with porosity effects based on the first shear beam theory. The material properties of beam vary along the axial direction. The porosity is depicted by two different distributions along axial direction. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of material graduation, porosity distribution, porosity coefficients and velocity of moving load on the dynamic responses of axially functionally graded beam are presented and discussed. The dynamic responses are obtained for different boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call