A three-phase interior permanent magnet (IPM) machine with 18-stator-slots/12-rotor-poles and concentrated armature winding is commercially employed as a 10 kW integrated-starter-generator in a commercial hybrid electric vehicle. For comprehensive and fair evaluation, a pair of flux-switching permanent magnet (FSPM) brushless machines, namely one stator permanent magnet flux-switching (SPM-FS) machine, and one rotor permanent magnet flux-switching (RPM-FS) machine, are designed and compared under the same DC-link voltage and armature current density. Firstly, a SPM-FS machine is designed and compared with an IPM machine under the same torque requirement, and the performance indicates that they exhibit similar torque density; however, the former suffers from magnetic saturation and low utilization of permanent magnets (PMs). Thus, to eliminate significant stator iron saturation and improve the ratio of torque per PM mass, an RPM-machine is designed with the same overall volume of the IPM machine, where the PMs are moved from stator to rotor and a multi-objective optimization algorithm is applied in the machine optimization. Then, the electromagnetic performance of the three machines, considering end-effect, is compared, including air-gap flux density, torque ripple, overload capacity and flux-weakening ability. The predicted results indicate that the RPM-FS machine exhibits the best performance as a promising candidate for hybrid electric vehicles. Experimental results of both the IPM and SPM-FS machines are provided for validation.
Read full abstract