Abstract

Over the past few decades, flux-switching permanent magnet (FSPM) machines have gained more attention. A novel flux-switching permanent magnet linear machine with a partitioned stator (FSPMLM-PS), which has the advantages of high thrust force density and high cost efficiency for short-stroke applications, is presented and analyzed in this article. Firstly, the twelve mover slots and seven stator poles (12s/7p) structure of FSPMLM-PS is introduced, and the fundamental principle of operation is investigated. The partitioned stator helps with the reduction in iron losses and the overall cost of the proposed FSPMLM-PS. One of the frequent issues in linear machines is the end effect, which is compensated for by setting assistant teeth at both ends of the mover. The proposed machine’s main design specifications are globally optimized through a multiobjective genetic optimization algorithm using JMAG software ver. 16.1, although the volumes of the PM and the magnetic and electric loadings are kept the same. The peak-to-peak flux linkage, thrust force, thrust ripples, and detent force are improved by 26.98%, 27.98%, 22.03%, and 68.33%, respectively, after optimization. The comparison results show that the proposed FSPMLM-PS is preferable to the conventional FSPMLM given in the literature. Under the same PM volume, the proposed machine provides 27.95% higher thrust force density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.