In this paper, enhanced rotational circulation in a circular microfluidic chamber driven by dual focused surface-acoustic-wave (SAW) beams is presented. To characterize the resonant frequency and focusing effect, we simulate the focused SAW field excited by an arc-shaped interdigital transducer patterned on a 128°Y-cut lithium-niobate (LiNbO3) substrate using a finite element method. A full three-dimensional perturbation model of the combined system of the microfluidic chamber and the SAW device is conducted to obtain the acoustic pressure and acoustic streaming fields, which show rotational acoustic pressure and encircling streaming resulted in the chamber. Accordingly, the SAW acoustofluidic system is realized using microfabrication techniques and applied to perform acoustophoresis experiments on submicron particles suspending in the microfluidic chamber. The result verifies the rotational circulation motion of the streaming flow, which is attributed to enhanced angular momentum flux injection and Eckart streaming effect through the dual focused SAW beams. Our results should be of importance in driving particle circulation and enhancing mass transfer in chamber embedded microfluidic channels, which may have promising applications in accelerating bioparticle or cell reactions and fusion, enhancing biochemical and electrochemical sensing, and efficient microfluidic mixing.
Read full abstract