Abstract

We analyze the formation and three-dimensional (3D) evolution of two coronal mass ejections (CMEs) and their associated waves in the low corona via a detailed multi-viewpoint analysis of extreme-ultraviolet observations. We analyze the kinematics in the radial and lateral directions and identify three stages in the early evolution of the CME: (1) a hyper-inflation stage, when the CME laterally expands at speeds of ∼1000 km s−1, followed by (2) a shorter and slower expansion stage of a few minutes and ending with (3) a self-similar phase that carries the CME into the middle corona. The first two stages coincide with the impulsive phase of the accompanying flare, the formation and separation of an EUV wave from the CME, and the start of the metric type II radio burst. Our 3D analysis suggests that the hyper-inflation phase may be a crucial stage in the CME formation with wide-ranging implications for solar eruption research. It likely represents the formation stage of the magnetic structure that is eventually ejected into the corona, as the white-light CME. It appears to be driven by the injection of poloidal flux into the ejecting magnetic structure, which leads to the lateral (primarily) growth of the magnetic flux rope. The rapid growth results in the creation of EUV waves and eventually shocks at the CME flanks that are detected as metric type II radio bursts. In other words, the hyper-inflation stage in the early CME evolution may be the “missing” link between CMEs, flares, and coronal shocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call