Abstract

This paper explores advanced shape control techniques for ultra-lightweight electro-actuated polymers with composite ferroelectric thin films. It begins with an overview of PVDF-TrFE film actuators used in the development of thin-shell composites, emphasizing the need to overcome constraints related to the electrode size for successful scalability. Strain generation in thin-film actuators is investigated, including conventional electrode-based methods and non-contact electron flux excitation. Numerical studies incorporate experimentally calibrated ferroelectric parameters, modeling non-contact actuation with an equivalent circuit representation. The potential distribution generated by electron flux injection highlights its potential for reducing print-through actuation issues. Additionally, the paper outlines a vision for the future of large thin-shell reflectors by integrating the discussed methods for charging ferroelectric polymer films. A hierarchical control strategy is proposed, combining macro- and micro-scale techniques to rectify shape errors in lightweight reflectors. These strategies offer the potential to enhance precision and performance in future spaceborne observation systems, benefiting space exploration and communication technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.