Bimetallic-metal organic frameworks (BiM-MOFs) or bimetallic organic frameworks represent an innovative and promising class of porous materials, distinguished from traditional monometallic MOFs by their incorporation of two metal ions alongside organic linkers. BiM-MOFs, with their unique crystal structure, physicochemical properties, and composition, demonstrate distinct advantages in the realm of biochemical sensing applications, displaying improvements in optical properties, stability, selectivity, and sensitivity. This comprehensive review explores into recent advancements in leveraging BiM-MOFs for fluorescence-based biochemical sensing, providing insights into their design, synthesis, and practical applications in both chemical and biological sensing. Emphasizing fluorescence emission as a transduction mechanism, the review aims to guide researchers in maximizing the potential of BiM-MOFs across a broader spectrum of investigations. Furthermore, it explores prospective research directions and addresses challenges, offering valuable perspectives on the evolving landscape of fluorescence-based probes rooted in BiM-MOFs.