Marine ecosystems are open, complex, adaptive, and hierarchical systems highly integrated through the exchange of matter and energy flows. This flows exchange allows marine ecosystems to operate at different scales acting as dissipative structures, building natural capital stocks capable of generating several ecosystem services vital for human well-being. Humans derive a wide range of goods and services from marine ecosystems while, at the same time, generate several impacts causing biodiversity loss and seriously affecting their capacity to provide benefits to humans. Effective management strategies are crucial to conserve healthy and diverse marine and coastal ecosystems, maintain the valuable functions and services they provide, and allow for sustainable human activities. In recent years, Marine Protected Areas (MPAs) have been increasingly acknowledged worldwide as important tools to conserve biodiversity and achieve human well-being and sustainable development goals. Assessing the value of natural capital and ecosystem services is crucial to raise awareness on their importance, support conservation strategies, and ensure the sustainable management of marine ecosystems. This study aimed at calculating biomass and emergy-based indicators to assess the value of natural capital stocks in a Mediterranean MPA. The assessment was performed through a biophysical and trophodynamic environmental accounting model fed with field biomass data collected through ad hoc sampling campaigns performed in the MPA. Four main macro-habitats were investigated: sciaphilic hard bottom (coralligenous bioconstructions), photophilic hard bottom, soft bottom, and Posidonia oceanica seagrass beds. The biomass density of the main autotrophic and heterotrophic taxonomic groups identified in the four macro-habitats of the MPA was evaluated. Based on this biomass matrix, the emergy value of natural capital stocks was assessed. The Posidonia oceanica seagrass beds habitat showed the highest biophysical value (2.32·1019 sej) at MPA scale, while coralligenous bioconstructions resulted the habitat with the highest biophysical value per unit area (2.72·1012 sej m−2). In addition, to complement the biophysical assessment with an economic perspective, the emergy-based indicators were converted into monetary units. The total value of natural capital of the whole MPA resulted in about 46 M€. The results of this study can support local managers and policy makers in the development of management strategies to ensure nature conservation and sustainable human activities. They can be also used as a benchmark for the assessment of natural capital value at larger scales in support of a proper consideration and inclusion of nature value into processes of policy making.
Read full abstract