Abstract
Cell-cell junctions, in particular adherens junctions, are major determinants of tissue mechanics during morphogenesis and homeostasis. In attempts to link junctional mechanics to tissue mechanics, many have utilized explicitly or implicitly equilibrium approaches based on adhesion energy, surface energy, and contractility to determine the mechanical equilibrium at junctions. However, it is increasingly clear that they have significant limitations, such as that it remains challenging to link the dynamics of the molecular components to the resulting physical properties of the junction, to its remodeling ability, and to its adhesion strength. In this perspective, we discuss recent attempts to consider the aspect of energy dissipation at junctions to draw contact points with soft matter physics where energy loss plays a critical role in adhesion theories. We set the grounds for a theoretical framework of the junction mechanics that bridges the dynamics at the molecular scale to the mechanics at the tissue scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.