Abstract

Intermediate mass planets, from Super-Earth to Neptune-sized bodies, are the most common type of planets in the galaxy. The prevailing theory of planet formation, core-accretion, predicts significantly fewer intermediate-mass giant planets than observed. The competing mechanism for planet formation, disk instability, can produce massive gas giant planets on wide-orbits, such as HR8799, by direct fragmentation of the protoplanetary disk. Previously, fragmentation in magnetized protoplanetary disks has only been considered when the magneto-rotational instability is the driving mechanism for magnetic field growth. Yet, this instability is naturally superseded by the spiral-driven dynamo when more realistic, non-ideal MHD conditions are considered. Here we report on MHD simulations of disk fragmentation in the presence of a spiral-driven dynamo. Fragmentation leads to the formation of long-lived bound protoplanets with masses that are at least one order of magnitude smaller than in conventional disk instability models. These light clumps survive shear and do not grow further due to the shielding effect of the magnetic field, whereby magnetic pressure stifles local inflow of matter. The outcome is a population of gaseous-rich planets with intermediate masses, while gas giants are found to be rarer, in qualitative agreement with the observed mass distribution of exoplanets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.