Abstract. In recent decades, the Entella River basin, in the Liguria Apennines, northern Italy, was hit by numerous intense rainfall events that triggered shallow landslides and earth flows, causing casualties and extensive damage. We analyzed landslide information obtained from different sources and rainfall data recorded in the period 2002–2016 by rain gauges scattered throughout the catchment, to identify the event rainfall duration, D (in h), and rainfall intensity, I (in mm h−1), that presumably caused the landslide events. Rainfall-induced landslides affected the whole catchment area, but were most frequent and abundant in the central part, where the three most severe events hit on 23–24 November 2002, 21–22 October 2013 and 10–11 November 2014. Examining the timing and location of the slope failures, we found that the rainfall-induced landslides occurred primarily at the same time or within 6 h from the maximum peak rainfall intensity, and at or near the geographical location where the rainfall intensity was largest. Failures involved mainly forested and natural surfaces, and secondarily cultivated and terraced slopes, with different levels of maintenance. Man-made structures frequently characterize the landslide source areas. Adopting a frequentist approach, we define the event rainfall intensity–event duration (ID) threshold for the possible initiation of shallow landslides and hyper-concentrated flows in the Entella River basin. The threshold is lower than most of the curves proposed in the literature for similar mountain catchments, local areas and single regions in Italy. The result suggests a high susceptibility to rainfall-induced shallow landslides of the Entella catchment due to its high-relief topography, geological and geomorphological settings, meteorological and rainfall conditions, and human interference. Analysis of the antecedent rainfall conditions for different periods, from 3 to 15 days, revealed that the antecedent rainfall did not play a significant role in the initiation of landslides in the Entella catchment. We expect that our findings will be useful in regional to local landslides early warning systems, and for land planning aimed at reducing landslide risk in the study area.
Read full abstract