Abstract

Abstract. In recent decades, the Entella River basin, in the Liguria Apennines, northern Italy, was hit by numerous intense rainfall events that triggered shallow landslides and earth flows, causing casualties and extensive damage. We analyzed landslide information obtained from different sources and rainfall data recorded in the period 2002–2016 by rain gauges scattered throughout the catchment, to identify the event rainfall duration, D (in h), and rainfall intensity, I (in mm h−1), that presumably caused the landslide events. Rainfall-induced landslides affected the whole catchment area, but were most frequent and abundant in the central part, where the three most severe events hit on 23–24 November 2002, 21–22 October 2013 and 10–11 November 2014. Examining the timing and location of the slope failures, we found that the rainfall-induced landslides occurred primarily at the same time or within 6 h from the maximum peak rainfall intensity, and at or near the geographical location where the rainfall intensity was largest. Failures involved mainly forested and natural surfaces, and secondarily cultivated and terraced slopes, with different levels of maintenance. Man-made structures frequently characterize the landslide source areas. Adopting a frequentist approach, we define the event rainfall intensity–event duration (ID) threshold for the possible initiation of shallow landslides and hyper-concentrated flows in the Entella River basin. The threshold is lower than most of the curves proposed in the literature for similar mountain catchments, local areas and single regions in Italy. The result suggests a high susceptibility to rainfall-induced shallow landslides of the Entella catchment due to its high-relief topography, geological and geomorphological settings, meteorological and rainfall conditions, and human interference. Analysis of the antecedent rainfall conditions for different periods, from 3 to 15 days, revealed that the antecedent rainfall did not play a significant role in the initiation of landslides in the Entella catchment. We expect that our findings will be useful in regional to local landslides early warning systems, and for land planning aimed at reducing landslide risk in the study area.

Highlights

  • The study concerning the rainfall thresholds able to trigger shallow landslides is certainly one of the most studied aspects in the geomorphological field in the last decades

  • In the 15-year period 2002–2016, the analysis of the 16 events for which spatial and temporal failure information are known with sufficient accuracy revealed that rainfall that has resulted in shallow landslides that exceeded 70 mm in 1 h in five cases (26.3 %), 100 mm in 3 h in five cases (26.3 %), and 200 mm in 24 h in four cases (21.0 %) (Table 3)

  • The intense to very intense rainfall events were produced by local thunderstorms, and caused abundant and widespread shallow landslides and earth flows, which have resulted in a total of two fatalities and severe damage to public and private structures and the infrastructure

Read more

Summary

Introduction

The study concerning the rainfall thresholds able to trigger shallow landslides is certainly one of the most studied aspects in the geomorphological field in the last decades. The idea of being able to predict the triggering of a mass movements as a function of recorded rainfall has greatly fascinated researchers all over the world. The study can be exhaustive only if the researcher has precise rainfall data and detailed information about the location, altitude and the time of the landslide trigger. A. Roccati et al.: Rainfall events with shallow landslides in the Entella catchment, Liguria, northern Italy tinued with many other studies in the following decade (Kim, 1991; Reid and Page, 1993; Ceriani et al, 1994; Premchitt et al, 1994; Crozier, 1997; Glade, 1997; Crosta, 1998)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.