Abstract
Abstract. To manage natural risks, an increasing effort is being put in the development of early warning systems (EWS), namely, approaches facing catastrophic phenomena by timely forecasting and alarm spreading throughout exposed population. Research efforts aimed at the development and implementation of effective EWS should especially concern the definition and calibration of the interpretative model. This paper analyses the main features characterizing predictive models working in EWS by discussing their aims and their features in terms of model accuracy, evolutionary stage of the phenomenon at which the prediction is carried out and model architecture. Original classification criteria based on these features are developed throughout the paper and shown in their practical implementation through examples of flow-like landslides and earth flows, both of which are characterized by rapid evolution and quite representative of many applications of EWS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.