This paper examines the effect mechanism of torsional stiffness on flexible joints and the dynamic optimization of a six Degree-of-freedom industrial robot arm. The design optimization of the robot arm is investigated based on the rotor-torsional spring model and finite element method. The flexible multi-body dynamic model of the robot arm are established by considering the flexible characteristics of arms and joints, and the natural frequencies of a robot arm are calculated to obtain the torsional stiffness of the flexible joints. Natural frequency results gradually increased with joint stiffness improvement. Using the established dynamic model, the topology optimization on the robot arm is carried out by regarding lightweight as design goal and total displacement as constraints. The tare-load ratio and dynamic performance of the optimized robot arm are significantly enhanced compared with the original design model. This research can provide the theoretical basis for the dynamic optimization and upgrade of lightweight robot arm.
Read full abstract