Binding immunoglobulin protein (BiP, also known as GRP78), a chaperone and master regulator of the unfolded protein response (UPR) pathway, plays an essential role in several flavivirus infections, but its functional role in regulating dengue virus replication in the mosquito remains largely unknown. We here demonstrated the interaction between a dengue virus serotype 2 (DENV2) and BiP in Aedes aegypti and report the discovery of a novel functional role of BiP in mosquito vitellogenesis. Silencing Ae. aegypti BiP (AaBiP) expression resulted in the significant inhibition of DENV2 viral genome replication, viral protein production, and infectious viral particle biogenesis. Co-immunoprecipitation assays showed that the DENV2 non-structural protein 1 (NS1) interacts with the AaBiP protein, and silencing AaBiP expression led to enhanced DENV2 NS1 aggregation, indicating that AaBiP plays a role in viral protein stability. A kinetic study focusing on pulse treatment of MG132, a proteasome inhibitor, in AaBiP-silenced mosquitoes showed that DENV2 NS1 was drastically elevated, which further suggests that AaBiP-mediated viral protein degradation is mediated by proteasomal machinery. Silencing of AaBiP also resulted in a reduction in mosquito fertility and fecundity. Depletion of AaBiP inhibited mosquito vitellogenesis due to the reduction of vitellogenin mRNA and elevated aggregation of vitellogenin protein post blood meal, further suppressing ovary development and fecundity. Overall, our results suggest that AaBiP is a dual-function protein with roles in both the regulation of dengue virus replication and mosquito reproduction. Our findings will be useful in the establishment of more efficient strategies for vector-borne disease control.
Read full abstract