Abstract
Recently, a new strategy for attenuating RNA viruses by redirecting their evolution in sequence space was confirmed for Enterovirus and Influenza viruses. Using avian flavivirus as a model, the 69 serine and 53 leucine codons on the E-NS1 genes were modified to change evolutionary direction of the viral sequence space. This means that all codons encoding serine or leucine residues were substituted with codons that are only one base different from the three stop codons, resulting in the initial position of the virus genome in sequence space being closer to the detrimental areas to achieve attenuation by reducing viral adaptability. The growth curve and plaque size of CQW1-one-to-stop (CQW1-OTS) were similar to those of CQW1-wild type (CQW1-WT) in vitro, but attenuated proliferation was detected when treated with a mutagenic reagent (ribavirin). However, comparably high CQW1-OTS and CQW1-WT lethality rates were detected in 9-day-old duck embryos and 5-day-old ducklings, suggesting that this strategy works but with limitations. With that in mind, homologous hosts in nonsensitive age (25-day-old ducks) and heterologous hosts (3-week-old Kunming mice) were employed to investigate if CQW1-OTS was attenuated under host selection pressure. Minimal attenuation of CQW1-OTS in elder ducks and apparent attenuation in mice were reported, providing reduced viral titers, mild clinical signs, and lower specific infectivity. Collectively, we experimentally demonstrate that the attenuation strategy of redirecting virus evolution in sequence space works for flavivirus. Redirection of the virus is attenuated only under some outside pressure, such as heterologous hosts or antiviral drugs treatment, limiting its usage in flaviviruses. IMPORTANCE Flaviviruses are medically important arboviruses that threaten public health, but no approved treatments are currently available. Vaccines prevent flavivirus infection. We employed duck Tembusu virus (TMUV), a mosquito-borne flavivirus, to evaluate virus redirection. TMUV is native to birds and could infect mice by intracerebral injection, making it an experimental animal model to study flavivirus characteristics in vivo. The 69 serine and 53 leucine codons on the E-NS1 proteins of CQW1 were synonymously substituted to change evolutionary direction of the virus in sequence space. In vitro mutagen reagent treatment suppressed CQW1-OTS viral multiplication, but in vivo attenuation depended on host selective pressure. CQW1-OTS viral attenuation was observed in older ducks but not sensitive ducklings; considerable attenuation was also observed in heterogenous host (mice), which provides more selective pressure on viruses. Collectively, these data indicated that there are very important preconditions for application of evaluating whether this strategy shows application prospects in novel flavivirus vaccine development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have