Gibbons, a type of lesser ape, are brachiators but also walk bipedally and without forelimb assistance, not only on the ground but also on tree branches. The arboreal bipedal walking strategy of the gibbons has been studied in previous studies in relation to two-dimensional (2D) kinematic analysis. However, because tree branches and the ground differ greatly in width, leading to a constrained foot contact point on the tree branches, gibbons must adjust their 3D joint motions of trunk and hindlimb on the tree branches. Furthermore, these motor adjustments could help minimize the center of mass (CoM) mediolateral displacement. This study investigated the kinematic adjustment mechanism necessary to enable a gibbon to walk bipedally on an arboreal-like substrate using 3D measurements. Trials were recorded with eight video cameras that were placed around the substrate. The CoM position on the body, the Cardan angles of the hindlimb joints and trunk, and spatiotemporal parameters were calculated. Asymmetry of thorax, pelvis, trunk, and left and right hindlimb joint motion was observed in the pole and flat conditions. In the pole condition, the narrower step width and the smaller range of motion of the mediolateral CoM displacement were observed with increased hip adduction and knee eversion angles. These kinematic adjustments might place the knee and foot directly under the body during the single support phase, producing a reduced step width and the amount of the mediolateral CoM displacement of a gibbon.
Read full abstract