Abstract

We prove that Ahlfors-regular RCD spaces are uniformly rectifiable and satisfy the Bilateral Weak Geometric Lemma with Euclidean tangents–a quantitative flatness condition. The same is shown for Ahlfors regular boundaries of non-collapsed RCD spaces. As an application we deduce a type of quantitative differentiation for Lipschitz functions on these spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.