Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5m and 1.2m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2m scenario, a similar pattern is evident for the first 30years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards at a rate commensurate with the rate of rise, thereby maintaining their original profile and position relative to the sea surface and the leeward and lagoonal sites with a low accretion rate maintain a similar profile but slowly gain depth relative to sea-level. The result of this variable response is that elevated features of the reef platform, such as reef patches and crests tend to become more pronounced.
Read full abstract