UAVs represent a tremendous opportunity to perform geophysical and repeated experiments, particularly in volcanic contexts. Their ability to be deployed rapidly and fly at various altitudes and the fact that they are easy to operate despite complex field conditions make them attractive for magnetic surveys. Detailed maps of the magnetic field in turn bring key constraints on the rocks’ composition, thermal anomalies, intrusive systems, and crustal contrast evolution. Yet, raw magnetic field measurements require careful processing to minimize directional, positional, and crossover errors. Moreover, stitching together adjacent or overlapping surveys acquired at different times and altitudes is not a trivial task. Therefore, it is challenging in remote areas to directly evaluate the consistency of a survey and to ascertain the success of the field mission. In this paper, we present a fast algorithm allowing for a quick-look modeling of scalar magnetic intensity measurements. The approach relies on rectangular harmonic analysis (RHA). The field measurements are automatically corrected for a global main field. Then, they are projected along this main field and modeled in terms of RHA functions. The software can exploit the quality indices provided with data and a procedure is applied to mitigate the effect of outliers. Maps for the scalar and the vector anomaly fields are readily built on an interpolated regular grid leveled at a constant altitude. In order to assess the modeling and the inversion procedures, analyses are carried out with synthetic measurements derived from a high-resolution global lithospheric magnetic field model estimated on the French aeromagnetic grid and at UAV locations with some added nonrandom noise. These analyses indicate that RHA is efficient for first-order and direct mapping of the crustal magnetic field structures measured by UAVs but that it could be applied on airborne and marine magnetic intensity data covering dense and large geographical extensions.
Read full abstract