As an important antibiotic, avermectin (AVM) has been widely used in China, but its unreasonable application has caused serious harm to the water environment. In view of the various pharmacological effects of quercetin (QUE), such as anti-inflammatory and antioxidant, the scientific hypothesis that “QUE may cause carp poisoning by inhibiting AVM” was proposed in this study. However, its protective effect in AVM -induced heart damage has not been reported. QUE reduced the symptoms of AVM toxicity and decreased the levels of creatine kinase, lactate dehydrogenase, and creatine kinase in the serum of carp. By histological observation, QUE was found to significantly reduce cardiac fiber swelling in carp. A DHE fluorescence probe study showed that QUE was able to inhibit AVM -induced accumulation of reactive oxygen species (ROS) in carp myocardium. We found that QUE significantly increased the intracellular antioxidant enzymes CAT, T-AOC and GSH enzyme activity and reduced intracellular MDA content. In addition, QUE significantly increased il-10 and tgf-β1 expression, and significantly down-regulated tnf-α, il-6, il-1β and inos expression. Tunel assay showed that QUE attenuated AVM -induced apoptosis, significantly decreased the transcript levels of pro-apoptosis-related genes, and increased the expression of anti-apoptosis-related genes. We also detected the protein expression of LC3 in the AVM group and QUE + AVM group, and found that the expression of LC3 was significantly increased in both groups compared with the Control group, but after adding QUE, the expression of LC3 was significantly decreased compared with the AVM group. In addition, the transcript levels of p62 and atg5 were also detected by qPCR. QUE significantly increased the expression of p62 and decreased the expression of atg5, suggesting that QUE could attenuate AVM -induced cardiac autophagy in carp. This study will provide preliminary evidence of the principle of QUE attenuating AVM -induced myocardial injury in carp from four aspects, including oxidative stress, inflammatory response, apoptosis and autophagy, and provide a theoretical basis for its prevention and treatment.
Read full abstract