Developing a hybrid phenomenological model for predicting the sound absorption coefficient of a pineapple leaf fibre/waste tea leaf fibre/glass fibre/epoxy-based natural fibre-reinforced hybrid composites is the predominant topic of this article. Phenomenological models excel at extrapolating characteristic impedance and wave number whereas empirical models require fewer inputs but overlook wave propagation in pores. Existing models apply only to single-fibre-reinforced composites, necessitating the creation of a hybrid model for hybrid composites. The developed hybrid Zwikker–Kosten and Johnson–Champoux–Allard model shows good agreement with experimental data across the frequency range, with standard deviations of 0.001–0.029 and percent deviations of 1.11%–11.43%. The overall noise reduction coefficient between the model and experiments is 0.31 vs. 0.30, with a 3.33% deviation. Furthermore, the application of alkali treatment increased the surface roughness which in turn, enhanced the sound absorption capabilities of these composites. The increased fibre roughness also amplified friction between fibres and sound waves, resulting in higher sound absorption coefficients. In addition, X-ray diffraction, thermal stability (thermogravimetric analysis and differential scanning calorimetry), and scanning electron microscopy examinations were performed on the designated composition (5% by weight of pineapple leaf fibre and 25% by weight of waste tea leaf fibre) of the pineapple leaf fibre/waste tea leaf fibre/glass fibre/epoxy-based natural fibre-reinforced hybrid composite.
Read full abstract