Abstract

Composite laminated structural panels are widely used in various industries such as aerospace and machinery because of their light weight, large specific stiffness, and strong fatigue resistance. As a typical engineering structure, the composite stiffened plate is designed to enhance the bearing capacity of the laminated plate. In this study, composite stiffened panels reinforced by carbon and/or E-glass fibres are modelled by finite element analysis (FEA) using Ansys. Nonlinear structural analysis is employed to find the critical buckling load. Three different skin layups, i.e., [45°/−45°/90°/0°]S, [90°/0°/90°/0°]S, and [60°/−30°/90°/0°]S, are studied. For each ply angle combination, different ply material combinations are studied. The cost and weight of each combination formed by applying different ply materials to the skin and stiffeners are studied. The results show that hybrid reinforcement in the stiffened panels reduces costs and maintains high buckling loads. Carbon/epoxy composites as the outer layers also reduce costs and maintain acceptable buckling loads without compromising the overall performance. Customized composite designs in terms of cost and weight can be achieved while maintaining critical buckling loads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.