Abstract

The optimal performance of composites enriched with hollow spheres has been reported in contemporary literature, whereas their thermal properties have received less attention. In this regard, a finite element method (FEM)-based micromechanical model has been developed systematically to investigate the role of intra-matrix embedding of hollow spheres on the thermal conductivity and coefficient of thermal expansion (CTE) of unidirectional fiber-reinforced hybrid composites. In so doing, the concept of representative volume element (RVE) considers microstructures comprising an epoxy matrix, E-glass fiber, and E-glass hollow spheres, assuming perfect bonding (ideal interface) between the components and modified approximate periodic boundary conditions. By computing the longitudinal and transverse temperature gradients generated due to the application of uniform heat flux as well as the geometrical variation in RVE owing to temperature enhancement, thermal conductivity and CTE have been respectively determined. Comprehensive evaluations have been conducted to examine the effects of microstructural-level features, including fiber volume content and orientation, plus volume content and thickness of hollow spheres, on the effective thermal conductivity and CTE of pseudo-porous ternary E-glass/epoxy composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.