Histone modifications play important roles in regulating chromatin dynamic changes. In this study, acetylated histone H3 lysine 9 and 18 (H3K9ac and H3K18ac), acetylated histone H4 lysine 5 and 8 (H4K5ac and H4K8ac), tri-methylation histone H3 lysine 4 (H3K4me3), di-methylation histone H3 lysine 9 (H3K9me2) are investigated in bovine oocytes, zygote, and preimplantation. During meiosis, H3K9ac and H3K18ac are erased after germinal vesicle breakdown, H4K8ac is erased after metaphase I (MI). Although H4K5ac is erased at MI, it is redetectable after this stage. However, histone methylations have no significant change during meiosis. During fertilization, intensive H4K5ac and H4K8ac are resumed on male and female chromatins at postfertilization 4 and 8 hr, respectively. H3K9ac and H3K18ac are resumed on both male and female chromatins at postfertilization 8 and 12 hr, respectively. H3K4me3 and H3K9me2 gradually increased on male chromatin after postfertilization 8 hr, while these two signals on female chromatin are detectable from postfertilization 2-18 hr. During embryo cleavage, H3K9ac, H3K18ac, and H3K4me3 are reduced at 8-cell stage, and then start to increase. H4K5ac, H4K8ac, and H3K9me2 increase after the 4-cell stage. At interphase, H4K5ac and H4K8ac are more intensive in nuclear periphery from 2- to 8-cell stages. During mitosis, the signal of H4K8ac is intensive at chromosome periphery. In summary, during both oocyte meiosis and fertilization, the dynamic changes of both histone acetylations and methylations happen in a process of lysine residue-specific and species-specific. During preimplantation development, the dynamic patterns of both H3K9ac and H3K18ac are similar to that of H3K4me3, while the dynamic pattern of H4K5ac is similar to that of H4K8ac. These results will be helpful for understanding the effect of histone posttranslational modifications on bovine reproduction and development.