Abstract
Microtubule and microfilament organization in porcine oocytes during maturation in vivo and in vitro was imaged by immunocytochemistry and laser scanning confocal microscopy. At the germinal vesicle stage, microtubules were not detected in the oocyte. After germinal vesicle breakdown, a small microtubule aster was observed near the condensed chromatin. During the prometaphase stage, microtubule asters were found in association with each chromatin mass. The asters then elongated and encompassed the chromatin at the metaphase-I stage. At anaphase-I and telophase-I microtubules were detected in the meiotic spindle. Microtubules were observed only in the second meiotic spindle at the metaphase-II stage. The meiotic spindle was a symmetric, barrel-shaped structure containing anastral broad poles, located peripherally and radially oriented. Taxol, a microtubule-stabilizing agent, did not induce microtubules in oocytes at the germinal vesicle stage. After germinal vesicle breakdown, numerous cytoplasmic foci of microtubules were formed in the entire oocyte when oocytes were incubated in the presence of taxol. Microfilaments were observed as a relatively thick uniform area around the cell cortex and were also found throughout the cytoplasm of oocytes at the germinal vesicle stage. After germinal vesicle breakdown, the microfilaments were concentrated close to the female chromatin. During prometaphase, microfilaments were chromatin moved to the peripheral position. At metaphase-I, two domains, a thick and a thin microfilament area, existed in the egg cortex. Chromosomes were located in the thick microfilament domain of the cortex. In summary, these results suggest that both micro-tubules and microfilaments are closely involved with chromosomal dynamics after germinal vesicle breakdown and during meiotic maturation in porcine oocytes. © 1996 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.