Abstract
Unfertilized eggs usually lack maternal centrosomes and cannot develop without sperm contribution. However, several insect species lay eggs that develop to adulthood as unfertilized in the absence of a preexisting centrosome. We report that the oocyte of the parthenogenetic viviparous pea aphid Acyrthosiphon pisum is able to self-organize microtubule-based asters, which in turn interact with the female chromatin to form the first mitotic spindle. This mode of reproduction provides a good system to investigate how the oocyte can assemble new centrosomes and how their number can be exactly monitored. We propose that the cooperative interaction of motor proteins and randomly nucleated surface microtubules could lead to the formation of aster-like structures in the absence of pre-existing centrosomes. Recruitment of material along the microtubules might contribute to the accumulation of pericentriolar material and centriole precursors at the focus of the asters, thus leading to the formation of true centrosomes. The appearance of microtubule asters at the surface of activated oocytes could represent a possible common mechanism for centrosome formation during insect parthenogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.