Simple SummaryThe clover cutworm, Scotogramma trifolii Rottemberg, and the spotted clover moth, Protoschinia scutosa (Denis & Schiffermuller), are worldwide polyphagous pests, and the larvae feed mainly on the leaf backs of many agricultural crops. However, the food sources and feeding habits of the adults are still poorly known. We investigated the ultramorphology of the proboscis and associated sensilla of S. trifolii and P. scutosa using scanning electron microscopy. The results show that the proboscises of S. trifolii and P. scutosa are structurally similar, both including three sensillum types and three zones (Zone 1–3). The sensillum chaeticum is non-porous hair-like, the sensillum basiconicum is a short smooth cone with a sensory pore on the blunt tip, and each sensillum styloconicum is composed of a uniporous sensory cone inserted into a ribbed stylus. In addition, the movement and fluid uptake mechanisms of the proboscis and the possible function of sensilla are briefly discussed.The proboscis is an important feeding organ for the glossatan moths, mainly adapted to the flower and non-flower visiting habits. The clover cutworm, Scotogramma trifolii Rottemberg, and the spotted clover moth, Protoschinia scutosa (Denis & Schiffermuller), are serious polyphagous pests, attacking numerous vegetables and crops, resulting in huge economic losses. However, the feeding behavior and mechanisms of the adult stage remain unsatisfactorily explored. In this study, the proboscis morphology of S. trifolii and P. scutosa are described in detail using scanning electron microscopy, with the aim of investigating the morphological differences and feeding behavior of these two species. The proboscises of S. trifolii and P. scutosa are similar in morphology and structure and are divided into three zones (Zone 1–3) based on the morphological changes of the dorsal legulae. Three sensillum types are located on the proboscises of both species, sensilla chaetica, sensilla basiconica, and sensilla styloconica. Significant differences were observed in the length of the proboscis and each zone between these two species, as well as in sensilla size and number. Based on the morphology of the proboscis and associated sensilla, S. trifolii and P. scutosa are potential flower visitors, which was also reinforced by the pollen observed at the proboscis tip. These results will strengthen our understanding of the structure of the proboscis related to the feeding behavior of Noctuidae.
Read full abstract