In recent years, the variability in the composition of cement raw materials has increasingly impacted the quality of cement products. However, there has been relatively little research on the homogenization effects of equipment in the cement production process. Existing studies mainly focus on the primary functions of equipment, such as the grinding efficiency of ball mills, the thermal decomposition in cyclone preheaters, and the thermal decomposition in rotary kilns. This study selected four typical pieces of equipment with significant homogenization functions for an in-depth investigation: ball mills, pneumatic homogenizing silos, cyclone preheaters, and rotary kilns. To assess the homogenization efficacy of each apparatus, scaled-down models of these devices were constructed and subjected to simulated experiments. To improve experimental efficiency and realistically simulate actual production conditions in a laboratory setting, this study used the uniformity of the electrical capacitance of mixed powders instead of compositional uniformity to analyze homogenization effects. The test material in the experiment consisted of a mixture of raw meal from a cement factory with a high dielectric constant and Fe3O4 powder. The parallel plate capacitance method was employed to ascertain the capacitance value of the mixed powder prior to and subsequent to treatment by each equipment model. The fluctuation of the input and output curves was analyzed, and the standard deviation (S), coefficient of variation (R), and homogenization multiplier (H) were calculated in order to evaluate the homogenization effect of each equipment model on the raw meal. The findings of the study indicated that the pneumatic homogenizer exhibited an exemplary homogenization effect, followed by the ball mill. For the ball mill, a higher proportion of small balls in the gradation can significantly enhance the homogenization effect without considering the grinding efficiency. The five-stage cyclone preheater also has a better homogenization effect, while the rotary kiln has a less significant homogenization effect on raw meal. Finally, the raw meal processed by each equipment model was used for clinker calcination and the preparation of cement mortar samples. After curing for three days, the compressive and flexural strengths of the samples were tested, thereby indirectly verifying the homogenization effect of each equipment model on the raw meal. This study helps to understand the homogenization process of raw materials by equipment in cement production and provides certain reference and data support for equipment selection, operation optimization, and quality control in the cement production process.
Read full abstract