Four various mesoporous silicas (MCM-48, SBA-15, MCF, and MSU) were modified by the molecular designed dispersion method using Fe(acac)3, Cr(acac)3, and Cu(acac)2 complexes. The deposition was performed at the same concentration of the metal acetylacetonate (acac) complex in a toluene solution. All as-synthesized samples were investigated by diffuse reflectance infrared Fourier transform spectroscopy, Fourier transform infrared photoacoustic spectroscopy, and thermogravimetric analysis. The calcined materials were studied with respect to their textural properties (Brunauer-Emmett-Teller adsorption isotherm) and chemical composition (electron microprobe analysis). It allowed elucidation of the mechanism of interaction between the acac complex and the silanol groups. For the MCM-48, SBA-15, and MCF materials, the formation of hydrogen bonding was found for the chromium- and copper-modified samples, whereas the Fe-containing materials showed the ligand exchange mechanism. The strong interaction of the MSU support and the different acetylacetonate complexes, resulting in a loss of at least one acac ligand, was observed. The mesoporous silicas modified with transition metal oxides were studied by UV-vis-DR spectroscopy. The different metal dispersions were found for the samples containing various transition metal oxides.
Read full abstract