Abstract
Four various mesoporous silicas (MCM-48, SBA-15, MCF, and MSU) were modified by the molecular designed dispersion method using Fe(acac)3, Cr(acac)3, and Cu(acac)2 complexes. The deposition was performed at the same concentration of the metal acetylacetonate (acac) complex in a toluene solution. All as-synthesized samples were investigated by diffuse reflectance infrared Fourier transform spectroscopy, Fourier transform infrared photoacoustic spectroscopy, and thermogravimetric analysis. The calcined materials were studied with respect to their textural properties (Brunauer-Emmett-Teller adsorption isotherm) and chemical composition (electron microprobe analysis). It allowed elucidation of the mechanism of interaction between the acac complex and the silanol groups. For the MCM-48, SBA-15, and MCF materials, the formation of hydrogen bonding was found for the chromium- and copper-modified samples, whereas the Fe-containing materials showed the ligand exchange mechanism. The strong interaction of the MSU support and the different acetylacetonate complexes, resulting in a loss of at least one acac ligand, was observed. The mesoporous silicas modified with transition metal oxides were studied by UV-vis-DR spectroscopy. The different metal dispersions were found for the samples containing various transition metal oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.