Abstract
Surface immobilization of active species onto mesoporous materials is gaining importance, especially in the design of functionalized mesoporous materials as a nanocatalyst through heterogenization of homogeneous catalytic systems. This article summarizes recent work on the synthesis, characterization and catalytic performance of the functionalized mesoporous catalysts performed by the present authors. A cationic rhenium(I) complex was encapsulated into mesoporous Al-MCM-41 molecular sieve using a ion-exchange method, yielding a new photocatalyst to be active for photocatalytic reduction of CO2. Surface functionalization of mesoporous silica SBA-15 with sulfonic acid groups was investigated to give a solid acid catalyst. The chemically modified Fe-containing mesoporous materials, which are active for hydroxylation of phenol, were prepared by a surface-grafting method that iron salts are immobilized onto mesoporous Si-MCM-41 with the help of 3-aminopropyltrimethoxysilane as a linker. A cobalt(III) complex was heterogenized onto mesoporous silica SBA-15 containing carboxylic groups in order to utilize as a solid catalyst for the liquid-phase oxidation of aromatic hydrocarbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.