This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats. The SGMH, BCHs, and dexamethasone groups were given corresponding treatments by gavage and nebulization, while the normal and model groups received normal saline by gavage and nebulization. After the final stimulation, pathological changes in the lung and intestine tissues were observed using hematoxylin-eosin(HE) and periodic acid-Schiff(PAS) staining. Lung function was assessed by measuring the ratio of forced expiratory volume in the first second to forced vital capacity(FEV1/FVC), the ratio of the average flow rate at 25%-75% of forced vital capacity to foned vital capacity(FEV25%-75%/FVC), the peak expiratory flow(PEF), and pulmonary resistance(RL). The levels of IL-4, IL-5, IL-13, and TNF-α in serum, and sIgA in serum, intestinal, and bronchial mucosa were detected by enzyme-linked immunosorbent assay(ELISA). The expression of TAS2R14 protein in lung tissue was detected by Western blot(WB). The content of short-chain fatty acids(SCFAs) in rat feces was determined by gas chromatography-mass spectrometry(GC-MS). The effect of TAS2R14/TSLP on lipopolysaccharide(LPS)-induced inflammation in epithelial cells in the BCHs group was observed, and the expression of TAS2R14 and TSLP in cells was detected by WB. Compared with the normal group, the model group showed reduced water intake, diet, and body weight, increased infiltration of inflammatory cells in the lung and intestinal tissues, goblet cell hyperplasia, significantly decreased FEV1/FVC, FEV25%-75%/FVC, and PEF, and significantly increased RL. Moreover, serum levels of IL-4, IL-5, IL-13, and TNF-α were elevated, and sIgA levels in serum, intestine, and bronchial mucosa were significantly decreased. TAS2R14 expression in lung tissues was inhibited, and the content of acetic acid, propionic acid, and butyric acid in feces was significantly reduced. In the LPS group, TSLP expression increased, and TAS2R14 expression decreased. Compared with the model group, the general condition of rats in the SGMH and BCHs groups improved, with reduced infiltration of inflammatory cells and goblet cell hyperplasia in the lung and intestinal tissues. FEV1/FVC, FEV25%-75%/FVC, and PEF significantly increased, and RL significantly decreased. Serum levels of IL-4, IL-5, IL-13, and TNF-α decreased, while sIgA levels in serum, intestine, and bronchial mucosa significantly increased, and TAS2R14 expression was activated in lung and intestinal tissues. The content of acetic acid, propionic acid, and butyric acid in feces significantly increased. Compared with the model group, the BCHs group and the agonist group showed inhibited TSLP expression and increased TAS2R14 expression. The results showed that both SGMH and BCHs could reduce lung and intestinal inflammatory reactions, improve lung function, and regulate the content of intestinal SCFAs in asthmatic rats. There was no significant difference in TAS2R14 protein expression between the SGMH and BCHs groups, indicating that the clinical efficacy of BCHs may be related to the activation of the bitter receptor TAS2R14 and the regulation of immune inflammatory mediators in lung and intestinal epithelial cells.
Read full abstract