Abstract

Liqi Tongbian is a traditional Chinese medicine (TCM) preparation that contains herbs that may treat slow transit constipation (STC). Atractylodes macrocephala, Astragalus membranaceus, Fructus aurantii, radish seed, uncooked Polygonum multiflorum, and Agastache rugosa were included in the formula for their unique qualities. The control of water transfer in the colon is greatly influenced by aquaporin 3 (AQP3). Based on this, the Liqi Tongbian mixture was used to detect the concentrations of aquaporins (AQPs), 5-HT and nitrix oxide synthase 1 (NOS1) in STC rats, and explore its effect, in order to provide a theoretical basis for the remedy of STC with TCM. Zhejiang University of Traditional Chinese Medicine provided 32 three-week-old Sprague Dawley rats of SPF-grade. The pairs licensed under SYXK (Zhejiang) 2021-0012 were kept at 20-25°C and humidity of 50-65%. The compound diphenoxylate caused constipation in the control, model, Liqi laxative (LQTB), and mosapride groups. The Liqi laxative rats were administered a mixture of traditional Chinese herbs after modeling, while mosapride was given to the other group. The levels of 5-HT, NOS1 and AQPs were tested in the feces and intestinal tissues. Comparing the condition of rat feces, it was found that the model group had significantly lower overall bulk, score and particles within 24 h compared to the control group. In comparison to mosapride, LQTB performed better. The model group had higher levels of 5-HT and NOS1 in intestinal tissue, while the LQTB and mosapride groups had decreased levels of these AQPs. LQTB had lower levels of AQP1, AQP3 and AQP4 than mosapride, while the model group had higher levels of these AQPs. Liqi Tongbian mixture works better than mosapride in improving constipation symptoms in rats with STC, and its mechanism is related to regulating the level of intestinal AQPs and neurotransmitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.