Migraine is a multifactorial brain disorder characterized by recurrent disabling headache attacks. One of the possible mechanisms in the pathogenesis of migraine may be a decrease in inhibitory cortical stimuli in the primary visual cortex attributable to cortical hyperexcitability. The aim of this study was to investigate the neural correlates underlying face and face pareidolia processing in terms of the event-related potential (ERP) components, N170, vertex positive potential (VPP), and N250, in patients with migraine. In total, 40 patients with migraine without aura, 23 patients with migraine and aura, and 30 healthy controls were enrolled. We recorded ERPs during the presentation of face and face pareidolia images. N170, VPP, and N250 mean amplitudes and latencies were examined. N170 was significantly greater in patients with migraine with aura than in healthy controls. VPP amplitude was significantly greater in patients with migraine without aura than in healthy controls. The face stimuli evoked significantly earlier VPP responses to faces (168.7 ms, SE = 1.46) than pareidolias (173.4 ms, SE = 1.41) in patients with migraine with aura. We did not find a significant difference between N250 amplitude for face and face pareidolia processing. A significant difference was observed between the groups for pareidolia in terms of N170 [F(2,86) = 14,75, P < 0.001] and VPP [F(2,86) = 16.43, P < 0.001] amplitudes. Early ERPs are a valuable tool to study the neural processing of face processing in patients with migraine to demonstrate visual cortical hyperexcitability.NEW & NOTEWORTHY Event-related potentials (ERPs) are important for understanding face and face pareidolia processing in patients with migraine. N170, vertex positive potential (VPP), and N250 ERPs were investigated. N170 was revealed as a potential component of cortical excitability for face and face pareidolia processing in patients with migraine.
Read full abstract