Magnetoactive polymer composites have garnered significant attention for their potential use in diverse applications, owing to their rapid and reversible response to external magnetic fields. By incorporating magnetic nanoparticles (MNPs) into an elastomeric matrix, these composites exhibit unique properties under static or alternating magnetic fields. In this context, thermo-polyurethane-based magnetic active composites are promising materials for developing microfluidic system components such as valves and peristaltic pumps. In the current study, we investigated the utilization of cobalt ferrite (CoFe2O4) magnetic nanoparticles in conjunction with a non-toxic synthesis method for polyurethane. It was explored the impact, on the overall success of the process, of cobalt ferrite nanoparticles incorporation at various stages of the thermo-polyurethane (TPU) synthesis reaction. Finally, the effects of different amounts of MNPs on the physicochemical properties of the resulting composites and their behavior as actuators under the influence of a magnetic field, was investigated. Our studies reveal that the actuator response of the composites increases proportionally with the percentage of MNPs present.Finally, the performance of a TPU/7.5% (V/V) CoFe2O4 composite strip as a flow control actuator within a microfluidic system was evaluated. This actuator responds to magnetic fields by bending, resulting in a 10% reduction in flow rate of microfluidic system. Reversing the magnetic field restores the flow rate to its initial value. Our cyclic tests illustrate the actuator's capacity to locally and temporarily modulate the microfluidic system's resistance. When combined with tailored TPU elasticity, these materials show significant potential for the fabrication of microfluidic valves and pumps.