SUMMARYPhysics-based simulations provide a path to overcome the lack of observational data hampering a holistic understanding of earthquake faulting and crustal deformation across the vastly varying space–time scales governing the seismic cycle. However, simulations of sequences of earthquakes and aseismic slip (SEAS) including the complex geometries and heterogeneities of the subsurface are challenging. We present a symmetric interior penalty discontinuous Galerkin (SIPG) method to perform SEAS simulations accounting for the aforementioned challenges. Due to the discontinuous nature of the approximation, the spatial discretization natively provides a means to impose boundary and interface conditions. The method accommodates 2-D and 3-D domains, is of arbitrary order, handles subelement variations in material properties and supports isoparametric elements, that is, high-order representations of the exterior boundaries, interior material interfaces and embedded faults. We provide an open-source reference implementation, Tandem, that utilizes highly efficient kernels for evaluating the SIPG linear and bilinear forms, is inherently parallel and well suited to perform high-resolution simulations on large-scale distributed memory architectures. Additional flexibility and efficiency is provided by optionally defining the displacement evaluation via a discrete Green’s function approach, exploiting advantages of both the boundary integral and volumetric methods. The optional discrete Green’s functions are evaluated once in a pre-computation stage using algorithmically optimal and scalable sparse parallel solvers and pre-conditioners. We illustrate the characteristics of the SIPG formulation via an extensive suite of verification problems (analytic, manufactured and code comparison) for elastostatic and quasi-dynamic problems. Our verification suite demonstrates that high-order convergence of the discrete solution can be achieved in space and time and highlights the benefits of using a high-order representation of the displacement, material properties and geometries. We apply Tandem to realistic demonstration models consisting of a 2-D SEAS multifault scenario on a shallowly dipping normal fault with four curved splay faults, and a 3-D intersecting multifault scenario of elastostatic instantaneous displacement of the 2019 Ridgecrest, CA, earthquake sequence. We exploit the curvilinear geometry representation in both application examples and elucidate the importance of accurate stress (or displacement gradient) representation on-fault. This study entails several methodological novelties. We derive a sharp bound on the smallest value of the SIPG penalty ensuring stability for isotropic, elastic materials; define a new flux to incorporate embedded faults in a standard SIPG scheme; employ a hybrid multilevel pre-conditioner for the discrete elasticity problem; and demonstrate that curvilinear elements are specifically beneficial for volumetric SEAS simulations. We show that our method can be applied for solving interesting geophysical problems using massively parallel computing. Finally, this is the first time a discontinuous Galerkin method is published for the numerical simulations of SEAS, opening new avenues to pursue extreme scale 3-D SEAS simulations in the future.