Abstract

Robust and efficient light coupling into and out of quantum valley-Hall (QVH) topological interfaces within near-infrared frequencies is demanded in order to be integrated into practical two-dimensional (2D) optical chips. Here, we numerically demonstrate efficient light coupling between a QVH interface and a pair of input/output silicon photonic waveguides in the presence of photonic crystal line defects. When the topological QVH interface is directly end-butt coupled to the silicon waveguides, the input-to-output transmission efficiency is lower than 50% and the exterior boundaries associated with a QVH interface also cause inevitable back-reflections and high-order scatterings, further reducing the transmission efficiency. The transmission efficiency is substantially increased to 95.8% (94.3%) when photonic crystal line defects are introduced between the bridge (zigzag) QVH interface and the waveguides. The buffering line defect mode, with an effective group refractive index between the interface state and the waveguide mode will ease their mode profile conversion. The design we present here brings no fabrication complexity and may be used as a guide for future implementation of on-chip 2D topological photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.