Background The DNA repair enzyme poly(ADP-ribose) polymerase (PARP) is involved in DNA damage repair and cell death. However, the association between PARP's biological activities and the immune microenvironment in hepatocellular carcinoma (HCC) is unclear. The present study will explore whether combining a PARP inhibitor with anti-PD1 might improve the anti-HCC impact and explain how it works. Method The PARP inhibitor olaparib was screened out of 867 drugs through Cell Counting Kit 8 (CCK-8) assay. The expression of PARP was verified through the TCGA and TISIDB databases. The impacts exerted by PARP inhibitor olaparib to HCC cells were assessed via wound healing, Transwell, and proliferation assay. In vivo, experiments were performed in a C57BL/6 mouse model to evaluate the function of PARP inhibitor olaparib combination with anti-PD1 in HCC and mice tumors were further detected by immunohistochemically staining. Result Olaparib was selected as the research object on the basis of drug screening. The results of the TCGA and Human Protein Atlas databases revealed that PARP was significantly upregulated in carcinoma cell cluster of HCC tissues compared to normal tissues. Higher expression of PARP showed a poorer prognosis based on Kaplan-Meier Plotter. qRT-PCR experiments confirmed that olaparib could increase PD-L1 expression through inhibiting miR-513 in HCC cells. In vivo, experiment confirmed that the combination of olaparib and anti-PD1 could enhance the immunotherapy effect of HCC. Conclusion The present study reveals that inhibition of PARP potentiates immune checkpoint therapy through the miR-513/PD-L1 pathway in HCC and the combination of PARP inhibitor olaparib and anti-PD1 is beneficial to HCC therapy.
Read full abstract